GalMod: the Milky Way Galaxy model

The “Galaxy Model” (GalMod) is a theoretical population synthesis model to simulate synthetic surveys of the Milky Way.

When using this model in a published paper please cite Pasetto et al. 2016, MNRAS 461 2383. People involved (directly or indirectly) in the realization of this project are Pasetto S. (PI); Brogliato, C.; Cassara, R.; Chiosi, C.; Crnojevic, D.; Grebel, E.; Hunt, J. A. S.; Kawata, D.; Natale, G.; Piovan,L.; Tantalo, R.. The realization of this project would have not been possible without the fundamental works carried out over more than three decades by Bertelli, G.; Nasi, Vallenari A.; E.; Bressan, A.; Girardi, L.; Marigo, P. and many others.

Introduction

It assumes the Galaxy to be compounded by a discrete superposition of several composite stellar populations (CSPs) belonging to a few nominal “major” stellar populations: the thin disk, the thick disk, the stellar halo and the bulge. These major stellar populations are assumed to be embedded in a single dark matter halo component and an hot coronal gas component.

A global model for the Milky Way's gravitational potential is built up to secure consistency with the density profiles by solving the Poisson equation. In turn, these density profiles are used to generate synthetic probability distribution functions (PDFs) for the distribution of stars in the color-magnitude diagrams (CMDs). Finally, the gravitational potential is used to constrain the stellar kinematics by means of the moment method on (perturbed)/phase-space distribution functions.

The model contains a description of non-axisymmetric features of the Galaxy such as the spiral arms, bar, photometric extinction and large field of view treatment where the gradients of the underlying stellar distribution are significant.

Usage and tutorial

Please feel free to contact Galaxy.Model@yahoo.com for support, comments or bug repot.

For a detailed description of the model please visit our tutorial

Input form

Set the number of stars that you want to see in the F.O.V.
N ∈ {101 .. 106}
Number of stars better representing the F.O.V. automatically determined.
Johnson-Cousins photometric systems. Set 1 for U, 2 for B, 3 for V, etc.
1stfilter ∈ {1..7}
1stfiltermin ∈ [1.0, 35.0] [dex]
1stfiltermax ∈ [1stfiltermin, 35.0] [dex]
2ndfilter ∈ {1stfilter+1..8}
Colmin ∈ [-2.0, 5.0] [dex]
Colmax ∈ [Colmin, 5.0] [dex]
Hubble Space Telescope's Wide Field Camera photometric systems. Set 1 for F435W, 2 for F475W etc.
1stfilter ∈ {1..11}
1stfiltermin ∈ [1.0, 35.0] [dex]
1stfiltermax ∈ [1stfiltermin, 35.0] [dex]
2ndfilter ∈ {1stfilter+1..12}
Colmin ∈ [-2.0, 5.0] [dex]
Colmax ∈ [Colmin, 5.0] [dex]
Hubble Space Telescope's High-Resolution Channel photometric systems. Set 1 for F220W, 2 for F250W etc.
1stfilter ∈ {1..15}
1stfiltermin ∈ [1.0, 35.0] [dex]
1stfiltermax ∈ [1stfiltermin, 35.0] [dex]
2ndfilter ∈ {1stfilter+1..16}
Colmin ∈ [-2.0, 5.0] [dex]
Colmax ∈ [Colmin, 5.0] [dex]
Gaia photometric systems. Set 1 for G, 2 for Gbp etc.
1stfilter ∈ {1..2}
1stfiltermin ∈ [1.0, 35.0] [dex]
1stfiltermax ∈ [1stfiltermin, 35.0] [dex]
2ndfilter ∈ {1stfilter+1..3}
Colmin ∈ [-2.0, 5.0] [dex]
Colmax ∈ [Colmin, 5.0] [dex]
SDSS photometric systems. Set 1 for u', 2 for g' etc.
1stfilter ∈ {1,4}
1stfiltermin ∈ [1.0, 35.0] [dex]
1stfiltermax ∈ [1stfiltermin, 35.0] [dex]
2ndfilter ∈ {1stfilter+1..5}
Colmin ∈ [-2.0, 5.0] [dex]
Colmax ∈ [Colmin, 5.0] [dex]
2MASS photometric systems. Set 1 for J, 2 for H etc.
1stfilter ∈ {1,2}
1stfiltermin ∈ [1.0, 35.0] [dex]
1stfiltermax ∈ [1stfiltermin, 35.0] [dex]
2ndfilter ∈ {1stfilter+1..3}
Colmin ∈ [-2.0, 5.0] [dex]
Colmax ∈ [Colmin, 5.0] [dex]
σmag(1stfiltermin) ∈ [0.0, 5.0] [deg]
σmag(1stfiltermax) ∈ [σmag(1stfiltermin), 5.00] [deg]
Zmin ∈ [0.0001, 0.05] [dex]
Zmin ∈ [Zmin, 0.05] [dex]
FOV angular definition
lmin ∈ [0,360[ [deg]
lmax ∈ [0,360[ [deg]
bmin ∈ [-90.0,90.0] [deg]
bmax ∈ [bmin,90.0] [deg]
FOV depth
rhel,min ∈ [0.0,50.0] [kpc]
rhel,max ∈ [rhel,min, 50.0] [kpc]
Proper motion limits
μl,min ∈ [-300,300] [mas/yr]
μl,max ∈ [μl,min,300[ [mas/yr]
μb,min ∈ [-300,300] [mas/yr]
μb,max ∈ [μb,min,300[ [mas/yr]
Radial velocity limits
vr,min ∈ [-300,300] [km/s]
vr,max ∈ [vr,min,300[ [deg]
FOV angular definition
lcen ∈ [0.0,360.0[ [deg]
bcen ∈ [-90,90] [deg]
Δl ∈ ]0.0,360.0[ [deg]
Δb ∈ ]0.0,180.0] [deg]
FOV depth
rhel,min ∈ [0.0,50.0] [kpc]
rhel,max ∈ [rhel,min, 50.0] [kpc]
Proper motion limits
μl,min ∈ [-300,300] [mas/yr]
μl,max ∈ [μl,min,300[ [mas/yr]
μb,min ∈ [-300,300] [mas/yr]
μb,max ∈ [μb,min,300[ [mas/yr]
Radial velocity limits
vr,min ∈ [-300,300] [km/s]
vr,max ∈ [vr,min,300[ [deg]
FOV angular definition {RA/dec, Opening Angle}
αcen ∈ [0,360[ [deg]
δcen ∈ [-90,90] [deg]
OA ∈ ]0.0,360.0] [deg]
FOV depth
rhel,min ∈ [0.0,50.0] [kpc]
rhel,max ∈ [rhel,min, 50.0] [kpc]
Proper motion limits
μl,min ∈ [-300,300] [mas/yr]
μl,max ∈ [μl,min,300[ [mas/yr]
μb,min ∈ [-300,300] [mas/yr]
μb,max ∈ [μb,min,300[ [mas/yr]
Radial velocity limits
vr,min ∈ [-300,300] [km/s]
vr,max ∈ [vr,min,300[ [deg]
FOV angular definition {RA/dec,ΔRA,Δdec}
αcen ∈ [0,360[ [deg]
δcen ∈ [-90,90] [deg]
Δα ∈ ]0,21600] [arcmin]
Δδ ∈ ]0,10800] [arcmin]
FOV depth
rhel,min ∈ [0.0,50.0] [kpc]
rhel,max ∈ [rhel,min, 50.0] [kpc]
Proper motion limits
μl,min ∈ [-300,300] [mas/yr]
μl,max ∈ [μl,min,300[ [mas/yr]
μb,min ∈ [-300,300] [mas/yr]
μb,max ∈ [μb,min,300[ [mas/yr]
Radial velocity limits
vr,min ∈ [-300,300] [km/s]
vr,max ∈ [vr,min,300[ [deg]
r [kpc] z [kpc] φ [deg] vr,☉ [kpc] vz,☉ [kpc] vφ,☉ [deg]
Bulge
ρB [M kpc-3]
109
ρB ∈ [1.0,10.0]x109 M
hr,B ∈ [0.1,2.0] [kpc]
Constant star formation between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and max met. of the pop., Zmax.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Exponential in/de-creasing star formation, et/hτ, between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
109
τ ∈ [-10,-1[∪]1,10]
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Linear in/de-creasing star formation between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)) so that you can set the relative importance of the star formation at the extremes of the time interval.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
SFRnorm ∈ [0.0, 1.0]
SFRnorm ∈ [0.0, 1.0]
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Function tζe-t/hτ between the min age of the pop., tmin, and the max age of the pop., tmax, with constant metallicity between min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are nomralized to the max(SFR(t)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
ζ ∈ [0.5,3.0] Gyrs
109
hτ ∈ [2.0, 8.0] Gyrs
Zmin ∈ [0.001, 0.05] [dex]
Zmax ∈ [Zmin, 0.05] [dex]
IMF of the form Mξ(M)dM = const. Mα
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
Log-normal IMF with two parameters, ξ0 and σM, below the separation masses, Msep,1, and a power-law slope, α, above it
 
Thin disk pop. I
105
ρD ∈ [1,10000]x105 M
hR,D ∈ [2.0,5.0] [kpc]
hz,D ∈ [0.01,2.00] [kpc]
σRR,D ∈ [σφφ,D,100.0] [km/s]
σφφ,D ∈ [σzz,D,100.0] [km/s]
σzz,D ∈ [1.0,100.0] [km/s]
Constant star formation between the min age of the pop., tmin, and the max age of the pop., tmax, Constant metallicity between the min met. of the pop., Zmin, and max met. of the pop., Zmax.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Exponential in/de-creasing star formation, et/hτ, between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
109
τ ∈ [-10,-1[∪]1,10]
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Linear in/de-creasing star formation between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)) so that you can set the relative importance of the star formation at the extremes of the time interval.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
SFRnorm ∈ [0.0, 1.0]
SFRnorm ∈ [0.0, 1.0]
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Function tζe-t/hτ between the min age of the pop., tmin, and the max age of the pop., tmax, with constant metallicity between min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are nomralized to the max(SFR(t)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
ζ ∈ [0.5,3.0] Gyrs
109
hτ ∈ [2.0, 8.0] Gyrs
Zmin ∈ [0.001, 0.05] [dex]
Zmax ∈ [Zmin, 0.05] [dex]
IMF of the form Mξ(M)dM = const. Mα
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
Log-normal IMF with two parameters, ξ0 and σM, below the separation masses, Msep,1, and a power-law slope, α, above it
 
Spiral arm sub-pop. I
Ωp ∈ [30.0, 40.0][Km s-1 kpc-1]
R0 ∈ [2.0,3.0][kpc]
p ∈ [6.0,9.0][deg]
m = 2 or 4
Φ0a ∈ [800.0,900.0][km2 s-2 kpc-1]
hs ∈ [2.0,3.0][kpc]
Thin disk pop. II
107
ρD ∈ [1,10000]x105 M
hR,D ∈ [2.0,5.0] [kpc]
hz,D ∈ [0.01,2.00] [kpc]
σRR,D ∈ [σφφ,D,100.0] [km/s]
σφφ,D ∈ [σzz,D,100.0] [km/s]
σzz,D ∈ [1.0,100.0] [km/s]
Constant star formation between the min age of the pop., tmin, and the max age of the pop., tmax, Constant metallicity between the min met. of the pop., Zmin, and max met. of the pop., Zmax.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Exponential in/de-creasing star formation, et/hτ, between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
109
τ ∈ [-10,-1[∪]1,10]
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Linear in/de-creasing star formation between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)) so that you can set the relative importance of the star formation at the extremes of the time interval.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
SFRnorm ∈ [0.0, 1.0]
SFRnorm ∈ [0.0, 1.0]
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Function tζe-t/hτ between the min age of the pop., tmin, and the max age of the pop., tmax, with constant metallicity between min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are nomralized to the max(SFR(t)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
ζ ∈ [0.5,3.0] Gyrs
109
hτ ∈ [2.0, 8.0] Gyrs
Zmin ∈ [0.001, 0.05] [dex]
Zmax ∈ [Zmin, 0.05] [dex]
IMF of the form Mξ(M)dM = const. Mα
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
Log-normal IMF with two parameters, ξ0 and σM, below the separation masses, Msep,1, and a power-law slope, α, above it
 
Thin disk pop. III
107
ρD ∈ [1,10000]x105 M
hR,D ∈ [2.0,5.0] [kpc]
hz,D ∈ [0.01,2.00] [kpc]
σRR,D ∈ [σφφ,D,100.0] [km/s]
σφφ,D ∈ [σzz,D,100.0] [km/s]
σzz,D ∈ [1.0,100.0] [km/s]
Constant star formation between the min age of the pop., tmin, and the max age of the pop., tmax, Constant metallicity between the min met. of the pop., Zmin, and max met. of the pop., Zmax.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Exponential in/de-creasing star formation, et/hτ, between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
109
τ ∈ [-10,-1[∪]1,10]
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Linear in/de-creasing star formation between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)) so that you can set the relative importance of the star formation at the extremes of the time interval.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
SFRnorm ∈ [0.0, 1.0]
SFRnorm ∈ [0.0, 1.0]
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Function tζe-t/hτ between the min age of the pop., tmin, and the max age of the pop., tmax, with constant metallicity between min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are nomralized to the max(SFR(t)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
ζ ∈ [0.5,3.0] Gyrs
109
hτ ∈ [2.0, 8.0] Gyrs
Zmin ∈ [0.001, 0.05] [dex]
Zmax ∈ [Zmin, 0.05] [dex]
IMF of the form Mξ(M)dM = const. Mα
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
Log-normal IMF with two parameters, ξ0 and σM, below the separation masses, Msep,1, and a power-law slope, α, above it
 
Thin disk pop. IV
107
ρD ∈ [1,10000]x105 M
hR,D ∈ [2.0,5.0] [kpc]
hz,D ∈ [0.01,2.00] [kpc]
σRR,D ∈ [σφφ,D,100.0] [km/s]
σφφ,D ∈ [σzz,D,100.0] [km/s]
σzz,D ∈ [1.0,100.0] [km/s]
Constant star formation between the min age of the pop., tmin, and the max age of the pop., tmax, Constant metallicity between the min met. of the pop., Zmin, and max met. of the pop., Zmax.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Exponential in/de-creasing star formation, et/hτ, between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
109
τ ∈ [-10,-1[∪]1,10]
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Linear in/de-creasing star formation between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)) so that you can set the relative importance of the star formation at the extremes of the time interval.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
SFRnorm ∈ [0.0, 1.0]
SFRnorm ∈ [0.0, 1.0]
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Function tζe-t/hτ between the min age of the pop., tmin, and the max age of the pop., tmax, with constant metallicity between min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are nomralized to the max(SFR(t)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
ζ ∈ [0.5,3.0] Gyrs
109
hτ ∈ [2.0, 8.0] Gyrs
Zmin ∈ [0.001, 0.05] [dex]
Zmax ∈ [Zmin, 0.05] [dex]
IMF of the form Mξ(M)dM = const. Mα
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
Log-normal IMF with two parameters, ξ0 and σM, below the separation masses, Msep,1, and a power-law slope, α, above it
 
Thin disk pop. V
107
ρD ∈ [1,10000]x105 M
hR,D ∈ [2.0,5.0] [kpc]
hz,D ∈ [0.01,2.00] [kpc]
σRR,D ∈ [σφφ,D,100.0] [km/s]
σφφ,D ∈ [σzz,D,100.0] [km/s]
σzz,D ∈ [1.0,100.0] [km/s]
Constant star formation between the min age of the pop., tmin, and the max age of the pop., tmax, Constant metallicity between the min met. of the pop., Zmin, and max met. of the pop., Zmax.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Exponential in/de-creasing star formation, et/hτ, between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
109
τ ∈ [-10,-1[∪]1,10]
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Linear in/de-creasing star formation between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)) so that you can set the relative importance of the star formation at the extremes of the time interval.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
SFRnorm ∈ [0.0, 1.0]
SFRnorm ∈ [0.0, 1.0]
Zmin ∈ [0.001, 0.050] [dex]
Zmax ∈ [Zmin, 0.050] [dex]
Function tζe-t/hτ between the min age of the pop., tmin, and the max age of the pop., tmax, with constant metallicity between min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are nomralized to the max(SFR(t)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
ζ ∈ [0.5,3.0] Gyrs
109
hτ ∈ [2.0, 8.0] Gyrs
Zmin ∈ [0.001, 0.05] [dex]
Zmax ∈ [Zmin, 0.05] [dex]
IMF of the form Mξ(M)dM = const. Mα
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
Log-normal IMF with two parameters, ξ0 and σM, below the separation masses, Msep,1, and a power-law slope, α, above it
 
Thick disk pop. I
104
ρD ∈ [1,10000]x104 M
hR,D ∈ [2.0,5.0] [kpc]
hz,D ∈ [0.01,2.00] [kpc]
σRR,D ∈ [σφφ,D,100.0] [km/s]
σφφ,D ∈ [σzz,D,100.0] [km/s]
σzz,D ∈ [1.0,100.0] [km/s]
vφ m ∈ [160,200.0] [km/s]
Constant star formation between the min age of the pop., tmin, and the max age of the pop., tmax, Constant metallicity between the min met. of the pop., Zmin, and max met. of the pop., Zmax.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
Zmin ∈ [0.0001, 0.0050] [dex]
Zmax ∈ [Zmin, 0.0050] [dex]
Exponential in/de-creasing star formation, et/hτ, between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
109
τ ∈ [-10,-1[∪]1,10]
Zmin ∈ [0.0001, 0.0050] [dex]
Zmax ∈ [Zmin, 0.0050] [dex]
Linear in/de-creasing star formation between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)) so that you can set the relative importance of the star formation at the extremes of the time interval.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
SFRnorm ∈ [0.0, 1.0]
SFRnorm ∈ [0.0, 1.0]
Zmin ∈ [0.0001, 0.0050] [dex]
Zmax ∈ [Zmin, 0.0050] [dex]
Function tζe-t/hτ between the min age of the pop., tmin, and the max age of the pop., tmax, with constant metallicity between min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are nomralized to the max(SFR(t)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
ζ ∈ [0.5,3.0] Gyrs
109
hτ ∈ [2.0, 8.0] Gyrs
Zmin ∈ [0.0001, 0.005] [dex]
Zmax ∈ [Zmin, 0.005] [dex]
IMF of the form Mξ(M)dM = const. Mα
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
Log-normal IMF with two parameters, ξ0 and σM, below the separation masses, Msep,1, and a power-law slope, α, above it
 
Stellar Halo pop. I
104
ρD ∈ [1.0,9.9]x104 M
α ∈ ]-3.0,-2.0[ [kpc]
hr,H* ∈ [0.1,5.0] [kpc]
σRR,D ∈ [σφφ,D,200.0] [km/s]
σφφ,D ∈ [σzz,D,200.0] [km/s]
σzz,D ∈ [50.0,200.0] [km/s]
vφ m ∈ [-50,50] [km/s]
Constant star formation between the min age of the pop., tmin, and the max age of the pop., tmax, Constant metallicity between the min met. of the pop., Zmin, and max met. of the pop., Zmax.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
Zmin ∈ [0.0001, 0.0050] [dex]
Zmax ∈ [Zmin, 0.0050] [dex]
Exponential in/de-creasing star formation, et/hτ, between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
109
τ ∈ [-10,-1[∪]1,10]
Zmin ∈ [0.0001, 0.0050] [dex]
Zmax ∈ [Zmin, 0.0050] [dex]
Linear in/de-creasing star formation between the min age of the pop., tmin, and the max age of the pop., tmax. Constant metallicity between the min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are normalized to the max(SFRnorm(tmin),SFRnorm(tmax)) so that you can set the relative importance of the star formation at the extremes of the time interval.
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
SFRnorm ∈ [0.0, 1.0]
SFRnorm ∈ [0.0, 1.0]
Zmin ∈ [0.0001, 0.0050] [dex]
Zmax ∈ [Zmin, 0.0050] [dex]
Function tζe-t/hτ between the min age of the pop., tmin, and the max age of the pop., tmax, with constant metallicity between min met. of the pop., Zmin, and the max met. of the pop., Zmax. The SFR values are nomralized to the max(SFR(t)).
109
tmin ∈ [0.0, 13.0] Gyrs
109
tmax ∈ [tmin, 13.0] Gyrs
ζ ∈ [0.5,3.0] Gyrs
109
hτ ∈ [2.0, 8.0] Gyrs
Zmin ∈ [0.0001, 0.005] [dex]
Zmax ∈ [Zmin, 0.005] [dex]
IMF of the form Mξ(M)dM = const. Mα
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
IMF of the form Mξ(M)dM = const. Mαi with i={1,2,3} and 2 separation masses Msep,j with j={1,2}
 
 
 
 
Log-normal IMF with two parameters, ξ0 and σM, below the separation masses, Msep,1, and a power-law slope, α, above it
 
Interstellar medium
107
ρISM ∈ [1.0,9.9]x107 M
hR,ISM ∈ [2.0,5.0] [kpc]
hz,ISM ∈ [0.01,2.00] [kpc]
Dark matter
v0 ∈ [100.0,200.0] [km s-1]
hr,DM ∈ [4.0,10.0] [kpc]
q ∈ [0.5,1.0]
Notification
@
We will use your email for notification purpose only. Once the simulation is ready we will send you an email with a link and a password to download the end result.